Energy-Efficiency and Security in Hardware-Constrained Wireless Communications

Elza Erkip

New York University

BalkanCom 2024

June 4, 2024

- ECE Department, NYU Tandon School of Engineering.
- Member of NYU WIRELESS.

• Theoretical foundations and practice oriented applications:

- Wireless and networking.
- Security and privacy.
- Compression.

Abbas Khalili

Sundeep Rangan

Serhat Bakirtas

Jim Buckwalter

Matthieu Bloch

Ozlem Yildiz

Hamed Rahmani

Upper Mid-Band

- 5G: MmWave frequencies.
- NextG: Upper mid-band.

S. Kang et al., "Cellular Wireless Networks in the Upper Mid-Band," *IEEE Open Journal of the Communications Society*, 2024.

- Opportunities
 - Wide bandwidth.
 - High data rates.

Opportunities

- Wide bandwidth.
- High data rates.
- Challenges:
 - Share spectrum with incumbents.
 - ⇒ High power consumption.
 - Large antenna arrays.
 - Wide bandwidh.

Resilient NextG Wireless Built Using Unsecure Hardware

- Disaggragated radio access and core network.
- Global supply chain.

Hardware Trojans in NextG Wireless

⇒ Detect and mitigate hardware Trojans in NextG transceivers.

This Talk

- Information and communication theory incorporating hardware constraints.
- Approach:
 - Start with abstract formulation, information theoretic bounds.
 - Incorporate/explore practical constraints.
 - Provide design guidelines.

This Talk

- Information and communication theory incorporating hardware constraints.
- Approach:
 - Start with abstract formulation, information theoretic bounds.
 - Incorporate/explore practical constraints.
 - Provide design guidelines.
- (1) How do we manage power consumption in NextG networks?
 - Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
 - Other RF components.

This Talk

- Information and communication theory incorporating hardware constraints.
- Approach:
 - Start with abstract formulation, information theoretic bounds.
 - Incorporate/explore practical constraints.
 - Provide design guidelines.
- (1) How do we manage power consumption in NextG networks?
 - Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
 - Other RF components.
- (2) How do we mitigate the impact of hardware Trojans in NextG networks?
 - Covert communications by a Trojan.
 - Impact of pilot scaling attacks.

(1) How do we manage power consumption in NextG networks?

- Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
- Other RF components.
- (2) How do we mitigate the impact of hardware Trojans in NextG networks?
 - Covert communications by a Trojan.
 - Impact of pilot scaling attacks.

- Classical MIMO receiver.
 - Fully digital.
 - High resolution ADC.
- What about NextG?

Fully Digital Receiver

S. Dutta et.al., "A Case for Digital Beamforming at mmWave," IEEE TW, 2020.

- One ADC per antenna, N_{RX} antennas
- NextG systems use large number of transmit and receive antennas
- \Rightarrow Linear power consumption with N_{RX} .

- $P/f_s = \text{FoM} \times 2^n$ • f_s : Sampling frequency. • FoM : Figure of merit. • n : ADC resolution. • f_s : Sampling frequency. • f_s : f_s : f
- B. Murmann, "ADC Performance Survey 1997-2017."

- \Rightarrow Exponential power consumption with resolution, b.
- \Rightarrow Linear power consumption with bandwidth, f_s .

- $P/f_s = \text{FoM} \times 2^n$
 - f_s: Sampling frequency.
 - FoM : Figure of merit.
 - n : ADC resolution.

B. Murmann, "ADC Performance Survey 1997-2017."

- \Rightarrow Exponential power consumption with resolution, b.
- \Rightarrow Linear power consumption with bandwidth, f_s .
- ⇒ May need low resolution ADCs and/or receiver architectures different than fully digital.

S. Dutta et.al., "A Case for Digital Beamforming at mmWave," IEEE TW, 2020.

- Analog receiver: One ADC.
- Hybrid receiver.
- How do the power consumption of different architectures compare?

16 Rx ANTENNAS	LNA	LO	VGA	ADC (8 bits)	ADC (4bits)	Total (MW)
Analog	197.9	10	1.55	33.3	-	242.75
Hybrid (K=2)	197.9	20	3.11	66.6	-	287.61
Digital (high res)	19.8	160	24.85	532.5	-	737.45
DIGITAL (LOW RES)	19.8	160	24.85	—	33.3	237.95

S. Dutta et.al., "A Case for Digital Beamforming at mmWave," IEEE TW, 2020.

- Several papers on analog/hybrid/digital receivers.
- We present an information theoretic formulation.

MIMO system with a given (small) number of one-bit ADCs:

- What is the maximum achievable rate?
- Which receiver achieves this rate?

- N_r : Number of receiver antennas.
- N_q : Number of quantizers.
- **V** : Analog combiner matrix $(N_q \times N_r)$.
- t : Threshold vector.
- $\mathbf{s} = \operatorname{sign}(\mathbf{V}\mathbf{y} + \mathbf{t})$: Quantized signal.

- N_r : Number of receiver antennas.
- N_q : Number of quantizers.
- **V** : Analog combiner matrix $(N_q \times N_r)$.
- t : Threshold vector.
- s = sign(Vy + t): Quantized signal.
- C_{OHR}: For a given N_q, maximum achievable rate, maximized over all input distributions, t, and V.

Example: MIMO One-shot

- $N_t = N_r = 2$ and $N_q = 4$.
- Each ADC corresponds to a hyperplane partitioning the signal space of dimension N_r .

[Khalili et. al, ISIT'18], [Khalili et. al., TCOM'22].

• High SNR capacity: Log of maximum number of regions

$$\log\left(\sum_{k=0}^{\operatorname{rank}} \binom{N_q}{k}\right) \leq C_{\mathsf{OHR}} \leq \log\left(\sum_{k=0}^{N_r} \binom{N_q}{k}\right)$$

 $\begin{array}{l} \Rightarrow \quad \text{When} \ N_q \leq N_r \Rightarrow C \text{ grows linearly with } N_q \\ \Rightarrow \quad \text{When} \ N_q > N_r \Rightarrow C \text{ grows logarithmically with } N_q \end{array}$

• Does not always achieve N_q bits per channel-use

Question: Can we increase the signal dimension and the number of hyperplanes **without** increasing the number antennas or ADCs?

Example: Proposed Blockwise Receiver

SISO channel:

• Analog block length ℓ = 2

•
$$N_t = N_r = 1$$
, and $N_q = 2$

Example: Proposed Blockwise Receiver

SISO channel:

• Analog block length ℓ = 2

•
$$N_t = N_r = 1$$
, and $N_q = 2$

Example: Proposed Blockwise Receiver

SISO channel:

 \bullet Analog block length ℓ = 2

•
$$N_t = N_r = 1$$
, and $N_q = 2$

• Without joint processing $C = \log 3 = 1.58$.

- Proposed blockwise analog processing virtually preserves the one-bit ADCs and uses them at once.
- For analog processing block length of $\ell = 2$:
 - Virtual number of receive antennas: $2N_r$.
 - Virtual number of ADCs: $2N_q$.
- For general ℓ :

$$\frac{1}{\ell} \log \left(\sum_{k=0}^{\ell \operatorname{rank}} \binom{\ell N_q}{k} \right) \le C_{\mathsf{BHR}}^{\mathsf{High SNR}} \le \frac{1}{\ell} \log \left(\sum_{k=0}^{\ell N_r} \binom{\ell N_q}{k} \right)$$

- Geometric approach to characterize the high SNR capacity of receivers with low resolution ADCs.
- Two new receiver architectures that improve the high SNR rate:
 - Blockwise hybrid receiver.
 - Adaptive threshold receiver (optimal performance).

[Khalili, Shirani, Erkip, Eldar, TCOM'22]

- Geometric approach to characterize the high SNR capacity of receivers with low resolution ADCs.
- Two new receiver architectures that improve the high SNR rate:
 - Blockwise hybrid receiver.
 - Adaptive threshold receiver (optimal performance).

[Khalili, Shirani, Erkip, Eldar, TCOM'22]

• What about optimized design/performance at finite SNR?

• High SNR capacity.

- Finite SNR.
 - Optimal input constellation and hyperplane placement.
 - Deep learning based solution.

SIMO with Low Resolution ADCs

[Khalili, Erkip, Asilomar'22]

Transmitter:

- *x*: Transmitted symbol.
- $P_X(\cdot)$: Input probability distribution.
- \mathcal{X} : Modulator.

Receiver:

- W : Linear analog combiner.
- $Q(\cdot)$: *b*-bit ADC.
- t: ADC thresholds.

[Khalili, Erkip, Asilomar'22]

Objective:

Under average transmit power P, maximize achievable rate

$$\max_{P_X(x), \mathcal{X}, \mathbf{W}, \mathbf{t}, \mathbf{Q}(\cdot)} I(X; Z)$$

subject to $\mathbb{E}|X|^2 \le P$

Achievable Rates

•
$$N_t = N_r = 1, N_q = 4.$$

- b: No. of bits per quantizer.
- $\bullet \ M: \ {\rm Modulation} \ {\rm order}.$
- \Rightarrow Optimal high SNR rate.
- $\Rightarrow\,$ Near Shannon capacity at low and intermediate SNRs.

Learned Constellations

• $N_q = 4$ quantizers, each b = 1 bits.

- Symmetric constellations.
- Modulation order increases as SNR is increased.

(1) How do we manage power consumption in NextG networks?

- Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
- Other RF components.
- (2) How do we mitigate the impact of hardware Trojans in NextG networks?
 - Covert communications by a Trojan.
 - Impact of pilot scaling attacks.
Analog versus Digital Transmitter

S. Dutta et.al., "A Case for Digital Beamforming at mmWave," IEEE TW, 2020.

16 Rx ANTENNAS	PA	LO	LPF	DAC (8 bits)	DAC (4bits)	Total (MW)
Analog	311.2	10	0.52	34.4	-	356.12
Hybrid (K=2)	311.2	20	1.04	69.2	-	401.44
Digital (high res)	299.9	160	8.32	553.6	-	1021.82
DIGITAL (LOW RES)	299.9	160	8.32	-	34.6	502.62

S. Dutta et.al., "A Case for Digital Beamforming at mmWave," IEEE TW, 2020.

Effect of Low-resolution DACs

- Rate loss.
- Spectral contamination: Quantization noise leaks into adjacent bands.

PSD of the linear modulator used for transmitting a 400 MHz channel centered at 28 GHz in a 5G NR system sample rate $f_{\rm samp}$ = 983 Ms/s. The PSD is shown for various number of bits (b) in the DAC.

OFDM Transceiver with Low Resolution DAC and ADC

[Dutta, Khalili, Erkip, Rangan, TCOM'23]

- SISO channel
- $z \in \mathbb{C}^N$: Vector of transmit symbols (e.g., frequency domain)
- $\mathbf{F} \in \mathbb{C}^{N \times N}$: Unitary matrix (e.g., FFT matrix)
- $\mathbf{u} = \mathbf{F}^{\mathsf{H}}\mathbf{z}$: Modulated signal (e.g., time domain)
- $\mathbf{Q}_{\mathrm{tx}}, \mathbf{Q}_{\mathrm{rx}}\!\!:$ DAC and ADC at the transmitter and receiver side
- $\mathbf{H}(\mathbf{x}, \boldsymbol{\xi})$: Mapping representing the channel
- $\boldsymbol{\xi}$: Channel noise independent of the input

Spectral Power Distribution

 $\bullet~{\bf r}$: Output of the spectrum analyzer (e.g., frequency domain)

 $\bullet~{\bf r}$ has to conform to the spectrum mask

• *Precise linear additive noise model* to capture the effect of DAC and ADC.

•
$$r = \alpha_{tx} z + w_{tx}, \quad w_{tx} \sim \mathcal{C}N(0, \tau_{tx}\overline{P})$$

•
$$\widehat{z} = \alpha_{\mathrm{rx}} z + w_{\mathrm{rx}}, \quad w_{\mathrm{rx}} \sim \mathcal{C}N(0, \tau_{\mathrm{rx}} P),$$

• Validity proved in the wideband regime.

• Adjacent carrier leakage ratio (ACLR):

ACLR = $10 \log_{10}(\nu_1/\nu_2)$.

- ν_1 : Transmitted power in the main sub-band
- ν_2 : Leaked power into the second sub-band

Accuracy of the Linear Model

ACLR with a finite DAC resolution (b) for a 200 MHz 3GPP NR OFDM transmitter compared with the proposed Linear model.

• Theoretical model accurately predicts the ACLR.

High-SNR Rate versus ACLR

Solid lines show the upper bounds on the achievable rate and the dashed lines show the achievable rate predicted by the linear model.

MIMO: Spatial Power Distribution

[Khalili, Erkip, Rangan, ISIT'22]

- Transmit array directed at $\pi/4$: $\mathbf{P}_1 = \frac{1}{N_t} \mathbf{e}(\frac{\pi}{4}) \mathbf{e}(\frac{\pi}{4})^{\mathsf{H}}$
- Beamforming gain at direction ψ : $(\mathbf{e}(\psi)^{\mathsf{H}}\mathbf{S}_{1}\mathbf{e}(\psi))$

- Linear model rigorously captures the effect of low resolution quantization on
 - Achievable rate of the system.
 - Achievable power spectrum, including out of band (OOB) emissions.
 - Spatial power distribution.
- Low resolution DAC \Rightarrow OOB emission cannot be reduced below a threshold.

(1) How do we manage power consumption in NextG networks?

- Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
- Other RF components.
- (2) How do we mitigate the impact of hardware Trojans in NextG networks?
 - Covert communications by a Trojan.
 - Impact of pilot scaling attacks.

Fully Digital Receiver

- Many components, e.g. mixer, are nonlinear.
 - "Knobs," e.g. LO power, to control the linear range.
 - Higher power \Rightarrow larger linear range.

Extension of the Linear Noise Model

Extension of the Linear Noise Model

[Skrimponis, Hosseinzadeh, Khalili, Rodwell, Buckwalter, Erkip, Rangan, IEEE Access'21]

- End-to-end model using [Dutta, Khalili, Erkip, Rangan, TCOM'23].
- Validated in practical systems using circuit and system level simulations.
 - Various design options for key RF components including the LNA, mixer, LO and ADC in 140 GHz.
- Allows for power optimized designs for the same achievable rate.

Component	Baseline		Design ⁽¹⁾		Design ⁽²⁾	
LNA	76.8	307.2	254.4	1017.6	76.8	307.2
Mixer	-	-	80	320	80	320
LO	1568	6272	63.57	82.3	76.8	204.15
ADC	65.43	261	65.43	261	130.86	523.44
Total	1710	6840	464	1682	358	1355

- Power consumption estimates (in mW) for the baseline and two optimized designs.
- 70-80% power savings.

(1) How do we manage power consumption in NextG networks?

- Low resolution quantization.
 - Receiver: Analog to digital conversion (ADC).
 - Transmitter: Digital to analog conversion (DAC).
- Other RF components.
- (2) How do we mitigate the impact of hardware Trojans in NextG networks?
 - Covert communications by a Trojan.
 - Impact of pilot scaling attacks.

Transmitter Hardware Trojan

Transmitter Hardware Trojan

- Tom can disrupt Alice-Willie communication by jamming.
- Tom may have access to Alice's information, channel state etc.

- Tom can also try to leak information by covertly communicating with Eve.
- Willie could act as the warden, trying to detect the covert communication.

Covert Communications: An Introduction

- Tom's goal: Transmit to Eve reliably and covertly.
 - Covert: Deniable, undetectable, low probability of detection.
- Willie's goal: Detect if there is communication between Tom and Eve.

Secure Communications: A Comparison

- Tom's goal: Transmit to Eve reliably and securely.
- Willie's goal: Decode Tom's message.
 - Willie is already aware of the communication.

Covert Communication: Willie's Hypothesis Test

• Hypotheses:

- H_0 : Only noise.
- H_1 : Noise + Tom-Eve communication.
- Metrics of Interest:
 - \mathbb{P}_F : Willie's type-I error / false alarm probability.
 - \mathbb{P}_M : Willie's type-II error / misdetection probability.

• Blind Test: Independent of the his received signal, Willie decides $\begin{cases} H_0, & \text{with probability } p \\ H_1, & \text{with probability } 1-p \end{cases}$

• $\mathbb{P}_F + \mathbb{P}_M = (1 - p) + p = 1$ is always achievable.

• Covertness Criterion: $\mathbb{P}_F + \mathbb{P}_M > 1 - \delta$ for some $\delta > 0$.

- Willie's test needs to be close to a blind test.
- This criterion does not tell anything about Willie's actual decision!
- It tells us that Willie's decision is not **credibly** better than a blind one.

[Bash et al., JSAC '13], [Bloch, Trans. IT '16], ...

- Willie has all the channel state information (CSI) and the channel statistics.
 - Discrete, AWGN, block fading, MIMO etc.
- The only uncertainty is the *realization* of the noise.
- Main Result: Tom can only send $\mathcal{O}(\sqrt{n})$ bits reliably and covertly in n channel uses.
 - Known as the square-root law.
 - Zero covert rate.

[Bash et al., JSAC '13], [Bloch, Trans. IT '16], ...

- Willie has all the channel state information (CSI) and the channel statistics.
 - Discrete, AWGN, block fading, MIMO etc.
- The only uncertainty is the *realization* of the noise.
- Main Result: Tom can only send $\mathcal{O}(\sqrt{n})$ bits reliably and covertly in n channel uses.
 - Known as the square-root law.
 - Zero covert rate.
- Additional sources of uncertainty may improve covert rate.
 - Channel gain, noise variance, crossover probability, channel state, timing of the communication etc.

• Can Tom inject extra uncertainty by controlling the channel estimation phase?

- Can Tom inject extra uncertainty by controlling the channel estimation phase?
- Tom needs to communicate covertly in the presence of Alice-Willie communication.

• Tamper with Alice's pilot sequence s_A covertly to corrupt Willie's channel estimate \hat{h}_W .

• Scaling pilot corruption: $\mathbf{s}_{AT} = (1 + \epsilon)\mathbf{s}_A$.

Prey on Willie's estimation error to communicate covertly with Eve.

Channel Estimation Phase

Communication Phase

- In the channel estimation phase, try to detect whether there is pilot scaling or not.
 - If the test is credibly better than a blind test, use its output as the decision.

Note: If pilot scaling is detected, communication phase doesn't take place.

- In the channel estimation phase, try to detect whether there is pilot scaling or not.
 - If the test is credibly better than a blind test, use its output as the decision.

Note: If pilot scaling is detected, communication phase doesn't take place.

- If the test is comparable to a blind test, assume H_0 .
- Estimate the channel \widehat{h}_W and proceed with the communication phase.

- In the channel estimation phase, try to detect whether there is pilot scaling or not.
 - If the test is credibly better than a blind test, use its output as the decision.

Note: If pilot scaling is detected, communication phase doesn't take place.

- If the test is comparable to a blind test, assume H_0 .
- Estimate the channel \widehat{h}_W and proceed with the communication phase.
- In the communication phase,
 - First decode Alice's signal and remove from the received signal.
 - Effective interference at Alice: $(h_W \hat{h}_W)x_A + h_W x_T$.
 - Then try to detect whether Tom is communicating with Eve or not.

Covertness Criteria

- We say Tom remains *covert* if
 - Willie fails to credibly detect Tom's pilot scaling attack in the channel estimation phase.
 - Willie also fails to credibly detect Tom's communication with Eve in the communication phase.
 - Tom's actions do not disrupt the legitimate Alice-Willie link.
 Note: Tom exploits the link margin.

Covertness Criteria

- We say Tom remains *covert* if
 - Willie fails to credibly detect Tom's pilot scaling attack in the channel estimation phase.
 - Willie also fails to credibly detect Tom's communication with Eve in the communication phase.
 - Tom's actions do not disrupt the legitimate Alice-Willie link.
 Note: Tom exploits the link margin.
- Tom can control:
 - Pilot scaling ϵ .
 - His transmit power Λ_T .
Main Result

Positive covert rates are possible by pilot scaling.

- Effective interference power at Willie: $\epsilon^2 |h_W|^2 \Lambda_A + |h_W|^2 \Lambda_T$.
- High ϵ helps covertness by increasing channel estimation error, but also increases effective interference at Willie.

- (1) Power consumption.
 - Low resolution ADC.
 - Optimal transceiver design.
 - Learned modulator and receiver.

- (1) Power consumption.
 - Low resolution ADC.
 - Optimal transceiver design.
 - Learned modulator and receiver.
 - Low resolution DAC/ADC.
 - Accurate linear model.
 - Spectral mask constraints, spatial power distribution.

- (1) Power consumption.
 - Low resolution ADC.
 - Optimal transceiver design.
 - Learned modulator and receiver.
 - Low resolution DAC/ADC.
 - Accurate linear model.
 - Spectral mask constraints, spatial power distribution.
 - Theory + RF design can lead to substantial power savings in mmWave and THz.

- (1) Power consumption.
 - Low resolution ADC.
 - Optimal transceiver design.
 - Learned modulator and receiver.
 - Low resolution DAC/ADC.
 - Accurate linear model.
 - Spectral mask constraints, spatial power distribution.
 - Theory + RF design can lead to substantial power savings in mmWave and THz.
- (2) Hardware Trojans.
 - Pilot scaling attacks and impact on Trojan covertness.

References

- A. Khalili, S. Rini, L. Barletta, E. Erkip, and Y. C. Eldar, "On MIMO Channel Capacity with Output Quantization Constraints," *IEEE International Symposium on Information Theory* (ISIT), 2018.
- [2] A. Khalili, F. Shirani, E. Erkip, and Y. C. Eldar, "Tradeoff Between Delay and High SNR Capacity in Quantized MIMO Systems," *ISIT*, 2019.
- [3] A. Khalili, F. Shirani, E. Erkip, and Y. C. Eldar, "On Multiterminal Communication over MIMO Channels with One-bit ADCs at the Receiver," *ISIT*, 2019.
- [4] A. Khalili, S. Shahsavari, F. Shirani, E. Erkip, and Y. C. Eldar, "On Throughput of Millimeter Wave MIMO Systems with Low Resolution ADCs," *IEEE International* conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.
- [5] S. Dutta, A. Khalili, E. Erkip, and S. Rangan, "Capacity Bounds for Communication Systems with Quantization and Spectral Constraints," *ISIT*, 2020.
- [6] P. Skrimponis, N. Hosseinzadeh, A. Khalili, M. Rodwell, J. Buckwalter, E. Erkip, S. Rangan, "Towards Energy Efficient Mobile Wireless Receivers Above 100 GHz," in *IEEE Access*, vol. 9, pp. 20704-20716, 2021.
- [7] A. Khalili, F. Shirani, E. Erkip and Y. C. Eldar, "MIMO Networks With One-Bit ADCs: Receiver Design and Communication Strategies," *IEEE Transactions on Communications*, vol. 70, no. 3, pp. 1580-1594, March 2022.

- [8] A. Khalili, E. Erkip and S. Rangan, "Quantized MIMO: Channel Capacity and Spectrospatial Power Distribution," *ISIT*, 2022.
- [9] A. Khalili, E. Erkip and S. Rangan, "Deep Learning Based Modulation for Quantized SIMO Communications," *Asilomar Conference on Signals, Systems and Computers*, 2022.
- [10] S. Dutta, A. Khalili, E. Erkip and S. Rangan, "Capacity Bounds and Spectral Constraints for Transceivers With Finite Resolution Quantizers," *IEEE Transactions on Communications*, vol. 71, no. 10, pp. 5756-5768, Oct. 2023.
- [11] S. Bakirtas, M. R. Bloch, E. Erkip, "Pilot-Attacks Can Enable Positive-Rate Covert Communications of Wireless Hardware Trojans," in arXiv:2404.09922, 2024.