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AI in Next-Generation Wireless Systems
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AI in Next-Generation Wireless Systems

AI-based “apps” are key components of next-generation wireless
architectures [Bonati et al, ’23]
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https://ieeexplore.ieee.org/abstract/document/10024837


AI in Next-Generation Wireless Systems

AI apps for decision making, e.g., decoding at the PHY [Cammerer et
al, ’23]
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https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1eeWiioAAAAJ&sortby=pubdate&citation_for_view=1eeWiioAAAAJ:O3NaXMp0MMsC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=1eeWiioAAAAJ&sortby=pubdate&citation_for_view=1eeWiioAAAAJ:O3NaXMp0MMsC


AI in Next-Generation Wireless Systems

AI apps for simulation, e.g., digital twins [Alkhateeb et al, ’23] [Ruah et
al, ’23]
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https://ieeexplore.ieee.org/abstract/document/10198573
https://ieeexplore.ieee.org/abstract/document/10234596
https://ieeexplore.ieee.org/abstract/document/10234596


AI in Next-Generation Wireless Systems

AI apps are typically arranged into functional graphs, in which
outputs from one app feed into another app [Almeida et al, ’24] [Mungari
et al ’24]
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https://ieeexplore.ieee.org/abstract/document/10329927
https://arxiv.org/abs/2405.18198
https://arxiv.org/abs/2405.18198


AI in Next-Generation Wireless Systems

Example: prediction-based optimization or control [Lindemann et al,
’22] [Zecchin et al, ’24]
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https://ieeexplore.ieee.org/abstract/document/10172259
https://ieeexplore.ieee.org/abstract/document/10172259
https://ieeexplore.ieee.org/abstract/document/10445122


AI in Next-Generation Wireless Systems

Current deployments of AI apps are best effort, lacking the
theoretical backing of conventional model-based solutions

Given pre-trained AI apps, can we ensure reliability at deployment time
(irrespective of the quality of the underlying AI apps)?

1 How to ensure reliability of an AI app used for decision making?

2 How to ensure reliability of an AI app used for prediction-based
optimization or control?

3 How to ensure end-to-end reliability of composite AI modules?
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AI in Next-Generation Wireless Systems
1 How to ensure reliability of a single AI app used for decision

making?
▶ Conformal prediction

2 How to ensure reliability of an AI app used for prediction-based
optimization or control?

▶ Conformal risk control
3 How to ensure end-to-end reliability of composite AI modules?

▶ Learn then test
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Reliable AI-Based Decision Making
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Reliable AI-Decision Making
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Can We Trust an AI App?
AI models assign, implicitly or explicitly, a confidence level to
different possible outputs

Reliability via calibration: If AI confidence = true accuracy =⇒ ask
a second opinion, refuse to make a decision, ...

But AI models are overconfident: confidence > true accuracy
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Can We Trust an AI App?
There is typically a trade-off between calibration and accuracy [Huang
et al, ’24][Tao et al, ’23][Kamran and Wien ’21]
(Expected calibration error (ECE) = expected gap between confidence and
accuracy)
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https://arxiv.org/pdf/2404.11350
https://arxiv.org/pdf/2404.11350
https://arxiv.org/pdf/2308.11838.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16098


Reliability via Set Prediction

One way to alleviate this problem is via top-k set prediction

input

fork

dog
melon

cat

model confidence
top-

prediction set

{dog, pizza, cat}

{pizza, chair, fork}

true label

cat

pizza

chair
pizza

fork

dog
melon

cat

chair
pizza

conventional
prediction

dog

pizza

Reliability via coverage? No, the predicted set may not contain the
true output with some desired probability

Non-adaptive set sizes

Osvaldo Simeone Reliable Wireless AI 14 / 54



Reliability via Set Prediction

One way to alleviate this problem is via top-k set prediction

input

fork

dog
melon

cat

model confidence
top-

prediction set

{dog, pizza, cat}

{pizza, chair, fork}

true label

cat

pizza

chair
pizza

fork

dog
melon

cat

chair
pizza

conventional
prediction

dog

pizza

Reliability via coverage? No, the predicted set may not contain the
true output with some desired probability

Non-adaptive set sizes

Osvaldo Simeone Reliable Wireless AI 14 / 54



Reliability via Set Prediction

One way to alleviate this problem is via top-k set prediction

input

fork

dog
melon

cat

model confidence
top-

prediction set

{dog, pizza, cat}

{pizza, chair, fork}

true label

cat

pizza

chair
pizza

fork

dog
melon

cat

chair
pizza

conventional
prediction

dog

pizza

Reliability via coverage? No, the predicted set may not contain the
true output with some desired probability

Non-adaptive set sizes

Osvaldo Simeone Reliable Wireless AI 14 / 54



Reliability via Set Prediction
Alternatively, create prediction sets by including all outputs with
confidence above a threshold

threshold

input
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Adaptive set sizes

Applicable also to continuous outputs (regression)

Reliability via coverage?
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Conformal Prediction
Conformal prediction guarantees reliability via coverage

Pr[true output ∈ predicted set] ≥ 1− α

for any user-defined miscoverage level α

Offline CP

from validation

Online CP

from past observations
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Offline Conformal Prediction
Selects threshold based on validation data
Guarantees coverage for exchangeable data (e.g., i.i.d.) [Vovk et al,
’05]
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https://link.springer.com/book/10.1007/978-3-031-06649-8
https://link.springer.com/book/10.1007/978-3-031-06649-8


Online Conformal Prediction

Adjusts the threshold adaptively based on past errors to minimize the
regret [Gibbs and Candes,’ 21] [Feldman et al ’22]

Guarantees coverage on average over time (see also [Angelopoulos et al

’24])
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III. WHY FREQ. OVERCONFIDENT?

Frequentist learning finds a single parameter vector. Assume that there do exist a gt single param vector.

Freq. would find a single param. vector that is the one that gives very overconfident, e.g., for any input

always yields p(y|x,�) = 1 for particular y, as the training data often has single (x, y) pair. This is

why usual freq. “finds” overconfident solution, while Bayesian cares prior to avoid this – this can be

interpreted as Bayesian also suffer from same issue of training data, but it has multiple params that are

overconfidient, so it becomes fine!

IV. PAC-BAYES

in general how the log is handled? maybe this is the key to the log loss and cal. ? What about if we

want to have bounds on joint event ?

V. STATISTICS

p-value, random forest, p-value for KS test ? – can we use it for seq. change detection?

permutation test !!

TODO: data processing ineq. TODO: f-divergence between indep P and Q TODO: what does it mean

by distributions are indep.?

�t+1 = �t + �(↵� errt) (3)

↵t+1 = ↵1 + t�(↵�
tX

t0=1

errt0) (4)

() ↵t+1 / t(↵� avg. miscoverage rate) (5)

VI. GOOD REFERENCES

A. PAC-Bayesian Theory

B. Modular learning

REFERENCES
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https://proceedings.neurips.cc/paper/2021/hash/0d441de75945e5acbc865406fc9a2559-Abstract.html
https://arxiv.org/abs/2205.09095
https://arxiv.org/html/2402.01139v1
https://arxiv.org/html/2402.01139v1


Calibration vs. Informativeness

Calibration is guaranteed, irrespective of the quality of the AI model

But, if the AI model is poor, the resulting predicted set may be
uniformative [Zecchin et al, ’24] [Park et al ’24]
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https://arxiv.org/abs/2401.11810
https://ieeexplore.ieee.org/abstract/document/10293257


Applications

Conformal prediction can be wrapped around the use of any AI app
to ensure reliability via coverage

Examples of use cases [Cohen et al, ’23]

▶ List demodulation, list decoding
▶ Modulation classification
▶ Channel prediction
▶ Device tracking
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https://ieeexplore.ieee.org/abstract/document/10262367


Example

Predict the angle of arrival (AoA) of the line-of-sight path between
a base station and a moving vehicle

The evolution of y0:τ−1 conditioned on y−T :−1 is multimodal due to
the unknown vehicle future route
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Time Series Prediction

Provided the past T samples of a time series y−T , . . . , y−1, predict
the next τ samples y0, . . . , yτ−1

Assume the availability of a probabilistic sequence model (e.g.,
transformer) p̂(y0:τ−1|y−T :−1)

We wish to obtain a reliable set predictor from an arbitrary
probabilistic sequence model
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Time Series Prediction

Previous work used a single prediction ŷ0:τ−1 to evaluate confidence
as [Lindemann et al ’23]

−||y0:τ−1 − ŷ0:τ−1||
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https://ieeexplore.ieee.org/abstract/document/10172259/?casa_token=DVBntt3VMa0AAAAA:MzySRXVhBLaAlyUCqAYMw-czE8StKkdOYbW4DXX3tFp2FpzSqYLSfaTNUx6ThhdHPeqbFhKb


Time Series Prediction
Sample a number of prototypes Pm = {ŷ i0:τ−1}mi=1 from the
probabilistic model p̂(y0:τ−1|y−T :−1)

Use the confidence score [Zecchin et al, ’24]

− min
ŷ0:τ−1∈Pm

||y0:τ−1 − ŷ0:τ−1||
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https://ieeexplore.ieee.org/abstract/document/10445122


Time Series Prediction
Channel prediction: The performance depends on the predictor and
on the function used to evaluate the confidence
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Reliable AI for Prediction-Based
Optimization and Control
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Reliable AI for Prediction-Based Optimization and Control

optimization/ 

control
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Prediction-Based Optimization

Consider constrained optimization problems of the form

maximize
x

U(x) (utility)

subject to Ey [R(x , y)] ≤ α (reliability constraint)

where the target variable y is unknown and must be predicted
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Example
Power allocation for unlicensed user subject to an average
interference constraint for a licensed user:

maximize
x

U(x) (unlicensed user rate)

subject to Ey [R(x , y)] ≤ α (interference constraint)

The target variable y is the channel gain of the licensed user
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Prediction-Based Control

Choose a sequence of actions x0:τ−1 to control the state s0:τ−1 of a
dynamical system so that

maximize
x0:τ−1

U(s0:τ−1) (utility)

subject to Ey0:τ−1 [R(s0:τ−1, y0:τ−1)] ≤ α (reliability constraint)

for some unknown target process y0:τ−1

Osvaldo Simeone Reliable Wireless AI 30 / 54



Prediction-Based Optimization and Control

A conventional best-effort prediction-based optimization or control
would replace the target with a prediction ŷ

maximize
x

U(x) (utility)

subject to R(x , ŷ) ≤ α (reliability constraint)

However, this does not guarantee reliability
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Prediction-Based Control and Control
With a conformal prediction-based predicted set, the average
constraint can be turned into a worst-case constraint [Lindemann et al

’23] [Zecchin et al ’24]

maximize
x

U(x)

subject to max
y∈predicted set

R(x , y) ≤ β

where β is a function of α
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https://ieeexplore.ieee.org/abstract/document/10172259/?casa_token=DVBntt3VMa0AAAAA:MzySRXVhBLaAlyUCqAYMw-czE8StKkdOYbW4DXX3tFp2FpzSqYLSfaTNUx6ThhdHPeqbFhKb
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https://ieeexplore.ieee.org/abstract/document/10445122


Example

Reliability via coverage may not provide an ideal solution when used
for prediction-based optimization or control
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Example

L(y, predicted set) = 1(y /∈ predicted set) ℓ(y)︸︷︷︸
increasing
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Conformal Risk Control

Conformal risk control generalizes conformal prediction by ensuring
the reliability requirement [Angelopoulos, et al ’22] [Cohen et al ’24]

E[L(true output, predicted set)] ≤ α

as long as the loss function L is decreasing as the predicted set grows

Note that the conformal prediction miscoverage loss is a special case:

L(true output, predicted set) = 1(true output /∈ predicted set)
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https://arxiv.org/abs/2208.02814
https://arxiv.org/abs/2401.11974


Conformal Risk Control

As for conformal prediction, conformal risk control can be
implemented offline or online
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Example

The performance level in terms of utility depends on the quality of
the predictor and on the confidence function
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Example

Proactive scheduling for URLLC [Cohen, et al ’23] and spectrum
sensing [Lee et al ’24]
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https://ieeexplore.ieee.org/abstract/document/10093058
https://arxiv.org/abs/2405.17071


Reliable Composition of AI Models
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Reliable Composition of AI Models

Graph of pre-trained AI apps, each with free hyperparameters
(e.g., temperature, module selection, fine-tuning learning rate,
complexity-fidelity trade-off)

How to select a hyperparameter vector λ so as to guarantee
end-to-end reliability (with minimal data requirements)?

Pr[R(λ) ≤ α] ≥ 1− δ
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Reliable Composition of AI Models

Conformal risk control is not directly applicable, since it applies to a
single hyperparameter λ and to a monotonic loss R(λ)

Conventional approach: Use validation data to estimate the risk as
R̂(λ), and then choose vector λ as

minimize
λ

R̂(λ)

This may lead to overfitting, failing to satisfy end-to-end reliability

Furthermore, it is not applicable if evaluating requires R̂(λ) real-world
testing
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Multi-Hypothesis Testing
Hyperparameter selection as scientific discovery or A/B testing
(multi-hypothesis testing) [Angelopoulos et al ’22]

null hypotheses
(current settings)
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https://arxiv.org/abs/2110.01052


Multi-Hypothesis Testing
Family-wise error rate (FWER) control:

Pr[no false discovery] ≥ 1− δ

discoveries
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Learn Then Test

Learn then test: Test one hypothesis for each candidate
hyperparameter vector λ [Angelopoulos et al ’22]

FWER guarantees that all selected hyperparameters are reliable with
probability ≥ 1− δ
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Learn Then Test via Fixed-Sequence Testing

Input: Pre-selected subset of hyperparameters Λ

Order the hyperparameter in any way

Set j = 1

Repeat until reliability check is violated
▶ Estimate risk as R̂(λ(j)) based on N validation data points
▶ Reliability check:

R̂(λ(j)) ≤ α−
√

− ln(δ)

2N

▶ If checked, add λ(j) to Λrel(δ)
▶ j = j + 1
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Digital Twin-Based Pareto Testing
How to pre-select hyperparameters and the testing order? Pareto
testing [Laufer-Goldshtein et al ’22] via a digital twin [Chen et al ’24]
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https://arxiv.org/abs/2210.07913
https://arxiv.org/abs/2404.01815


Neuromorphic Communications

shared 

wireless 

channel

encoding SNN

encoding SNN

encoding SNN

encoding SNN

decoding SNN

Neuromorphic communication integrates neuromorphic sensing,
impulse radio communications, and neuromorphic computing
[Skatchkovsky et al ’21] [Chen et al ’23]
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Neuromorphic Communications

Hardware implementation showcases potential scaling to
thousands of nodes [Lee at al ’24]
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https://spectrum.ieee.org/brain-machine-interface-2667619198


Neuromorphic Communications

Neuromorphic communications with a wake-up radio [Chen et al ’24]

Hyperparameters: thresholds for sensing, wake-up radio signal
detection, and decision making
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Neuromorphic Communications

Based on simulations, the digital twin determines an estimated
energy-risk Pareto boundary [Laufer-Goldshtein et al ’22]

Lean the test is applied sequentially starting from the lowest
estimated risk
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Digital Twin-Based Learn Then Test
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Conclusions
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Conclusions

Recent advances in statistics enable the post-hoc calibration of
pre-trained AI model, ensuring reliability for

▶ decision making
▶ model-based optimization and prediction
▶ composition of AI models

Conformal prediction, conformal risk control, and learn then test are
easily wrapped around existing AI models

Directions for research:
▶ In-depth exploration of other use cases for wireless systems
▶ Information-theoretic analysis
▶ Decentralized implementations
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Reliability via Set Prediction
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Reliability via Set Prediction

[Angelopoulos et al ‘23]
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Reliability via Set Prediction

[Quach et al ‘23]
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Offline Conformal Prediction

Example [Toccaceli, ’19]

𝛼 = 0.01 𝛼 = 0.05 
both classes
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https://cml.rhul.ac.uk/people/ptocca/HomePage/Toccaceli_CP___Venn_Tutorial.pdf


Example
Using conventional prediction-based optimization, the output of the
scheduler may be unreliable...
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Example

... or inefficient
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Example

Using conformal risk control guarantees reliable and efficient
resource allocation, irrespective of the calibration of the predictor
[Cohen et al ’23]
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Neuromorphic Computing

Neuromorphic computing implements spiking neural networks
(SNNs)
SNNs leverage sparsity to reduce processing energy [Davies et al ’23]
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https://ieeexplore.ieee.org/abstract/document/9395703


Neuromorphic Computing

E.g., neuromorphic transformer for in-context learning for MIMO
demodulation [Song et al ’24]
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https://arxiv.org/abs/2404.06469


Neuromorphic Sensing

[Prophesee]

Neuromorphic computing is particularly effective when implemented
on data captured by neuromorphic sensors, such as DVS cameras
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Example

Beam tracking using vision-based prediction [Imran et al ’24]

L(true mask, predicted set) = fraction of missed pixels
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https://arxiv.org/pdf/2402.14766.pdf
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